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In this paper we derive decomposition results for the number of customers in polling
systems under arbitrary (dynamic) polling order and service policies. Furthermore, we obtain
sharper decomposition results for both the number of customers in the system and the waiting
times under static polling policies. Our analysis, which is based on distributional laws,
relaxes the Poisson assumption that characterizes the polling systems literature. In particular,
we obtain exact decomposition results for systems with either Mixed Generalized Erlang
(MGE) arrival processes, or asymptotically exact decomposition results for systems with
general renewal arrival processes under heavy traffic conditions. The derived decomposition
results can be used to obtain the performance analysis of specific systems. As an example,
we evaluate the performance of gated Markovian polling systems operating under heavy
traffic conditions. We also provide numerical evidence that our heavy traffic analysis is very
accurate even for moderate traffic.
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1. Introduction

Polling systems were introduced in the early 1970s as models of time-sharing
computer systems (Takagi [24] indicates that polling goes back to the patrolling re-
pairman problem in the 1950s). Currently, they are extensively used to model queueing
systems where many job classes share a single server and a setup time is incurred when-
ever the server changes classes. Such systems represent a broad range of applications:
production and manufacturing systems, traffic and transportation systems and, as we
already mentioned, computer and communications systems.

In this paper we study polling systems with general renewal arrival processes for
the different job classes, arbitrary polling order and service policies in the individual
queues, and we address the following questions: Are there structural relationships that
prevail in such a general setting? Is there a subclass of polling systems for which we

 J.C. Baltzer AG, Science Publishers



296 D. Bertsimas, G. Mourtzinou / Decomposition results for general polling systems

have sharper, easier to use, results? If so, how can our structural results be used to
yield the performance analysis of specific systems?

Traditionally, the literature in the area of polling systems deals with the perfor-
mance analysis of specific models under Poisson arrivals. The earliest papers on the
topic considered models of cyclic polling (see, for example, Konheim and Meister [20]
for a discrete time model, and Cooper and Murray [10], Eisenberg [12] for continu-
ous time models). Recently, more general polling systems have been proposed and
analyzed in Kleinrock and Levy [19], Boxma and Weststrate [9], and in Baker and
Rubin [2]. A thorough survey of polling systems may be found in Takagi [24] and
more recent results appear in Takagi [25] and Levy and Sidi [22]. There are also a few
papers dealing with general inputs for cyclic polling systems, for example, Tran-Gia
[26] (for a discrete time model) and Bertsimas and Mourtzinou [4] (for a continuous
time model).

This paper follows a more recent trend in the polling systems literature, es-
tablishing structural results for a variety of polling models with Poisson arrivals.
Fuhrmann [13] and Fuhrmann and Cooper [14] first established decomposition re-
sults for cyclic polling systems. Based on those decomposition results, Boxma and
Groenendijk [8] proved that the total amount of work in a cyclic polling system is
composed of two independent components: one is the amount of work in the corre-
sponding system without the switch-over times, the other is the amount of work at
an arbitrary epoch during a switch-over period; those results are known as pseudo-
conservation laws. Similar pseudo-conservation laws hold for a variety of polling
systems, including systems with probabilistic polling order and systems with polling
tables, as illustrated in a survey paper by Boxma [7]. Recently, Srinivasan et al. [23]
related the waiting time distributions in a cyclic polling system with nonzero switch-
over time to the corresponding distributions in a polling system with zero switch-overs
via a decomposition argument and then derived explicit relationships for the waiting
time moments. Their results were extended in Borst and Boxma [6].

The contributions of this work are as follows:

1. We derive a set of decomposition results for the number of customers in polling
systems, which allow for arbitrary polling order and service policies. Furthermore,
we identify sufficient conditions on the systems, namely static polling policies, that
give rise to sharper decomposition results for both the number of customers in the
queue and the waiting times.

2. Our decomposition results relate the number of customers and the waiting times
in the individual queues of the polling system and the corresponding quantities
in the same queues in isolation. Therefore, they can easily be used to obtain
the performance analysis of each queue of the polling system, in contrast with
pseudo-conservation laws that can only yield bounds for the individual queues.
To emphasize this point we obtain, in the last part of the paper, the performance
analysis of Markovian polling systems with general arrival and service distribu-
tions, under heavy traffic conditions. We also provide numerical evidence that our
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heavy traffic analysis gives rise to very accurate results, compared with simulation,
even for moderate traffic.

3. We relax the Poisson assumption that characterizes the polling systems litera-
ture. In particular we obtain decomposition results for systems with either Mixed
Generalized Erlang (MGE) arrival processes, or general renewal arrival processes
provided that the system is operating under heavy traffic conditions.

Regarding the methodological contribution of this work, we propose a new
method for addressing polling systems based on distributional laws first obtained by
Haji and Newell [15]. Our work in this paper further demonstrates the significance of
these laws as already noted by Keilson and Servi [16,17] and Bertsimas and Mourtzi-
nou [3,4].

The rest of the paper is structured as follows. In section 2, we present the
model and we introduce the necessary notation. Next, in sections 3 and 4, we prove
the decomposition results for systems with mixed generalized Erlang arrivals and for
systems with renewal arrivals under heavy traffic, respectively. In section 5, we apply
our analysis to obtain the performance of a Markovian polling system under heavy
traffic and we compare our results to simulation experiments. Finally, we conclude
with some remarks and future directions in section 6.

2. Model description and notation

We consider a general queueing system, in which a single server is servicing
N classes of customers. Class i customers arrive at queue (node) i according to a
renewal arrival process described by Nai(t), the number of arrivals in the interval
(0, t], with mean interarrival time 1/λi. We denote by N∗ai(t) the number of arrivals
in the interval (0, t] from the equilibrium arrival process. The service time of class i
customers, represented by Xi, follows a general distribution with mean E[Xi]. We
impose the following assumptions:

A.1. All arriving customers enter the system one at a time, remain in the system until
served (there is no blocking, balking or reneging) and leave also one at a time.

A.2. The customers within each class leave the system in the order of arrival (FIFO).

A.3. For each class, new arriving customers do not affect the time in the system of
previous customers.

A.4. Different arrival processes are mutually independent.

The above assumptions are commonly used in the literature and allow for depen-
dencies between the service times of different customer classes.

Regarding the polling policy, we start our analysis by allowing the server to poll
the different nodes using an arbitrary policy and to encounter a random delay dij every
time he switches from node i to node j. If all switch-over times are deterministic and
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equal to zero, we further assume (see, for example, [24]) that the server stops switching
whenever the system becomes empty, and then instantaneously switches to the queue
where the next customer arrives. The reason we impose this further assumption is that
we do not want the server to switch infinitely many times between queues in zero time.
We do not impose any conditions on the way the server is servicing the individual
nodes other than assumption A.2.

Next, to obtain sharper decomposition results, we focus on a subclass of polling
systems where:

A.5. The polling order is independent of the number of customers in the system.

A.6. The service policy is gated for classes in a set Eg and exhaustive for the rest of
classes.

A.7. The switch-over times are nonzero.

We refer to polling policies satisfying assumption A.5 as static polling policies.
The class of static policies contains the majority of polling policies studied in the
literature, i.e., cyclic or probabilistic polling as well as fixed-order polling tables.
Furthermore, assumption A.6 focuses on the two most commonly used service policies,
exhaustive and gated. Let us describe those service policies: If queue i is served in
a gated mode and there are Ni customers waiting in the queue when the server starts
servicing this class, then the server processes all Ni customers in a FIFO order, and
then polls queue j – according to the general policy – after encountering a random
delay dij . Notice that the class i customers that arrive while the server is servicing the
Ni customers have to wait for the next visit of the server to the ith queue, i.e., for a
full cycle to be completed. On the other hand, if queue j is served in an exhaustive
mode, then whenever the server polls this queue it continues servicing in a FIFO order
until the queue empties. We introduce the following notation:

T ki : the time that the server spends servicing the ith class in the kth visit;

Cki : the (k−1)st cycle with respect to class i, i.e., the time interval from the (k−1)st
entrance to queue i until the kth entrance to queue i;

∆ki : the intervisit time with respect to class i, i.e., the time between the end of the
(k − 1)st visit and the beginning of the kth visit to class i;

Ckij: the time interval between the kth entrance to queue i and the previous entrance
to queue j.

Notice that Ckii = Cki . Further, we let ρi be the utilization of station i,

ρi
∆
= λiE[Xi], and ρ

∆
=
∑N

i=1 ρi be the total traffic intensity. We assume throughout
this paper that stability conditions are fulfilled and that the system reaches steady-state
(the ergodicity conditions depend on the service policies at the queues; obviously ρ < 1
is a necessary condition, but not always sufficient).

We further define the following quantities in steady-state:

Qi: the number of customers waiting in queue i in steady-state;
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Li: the number of customers of class i in the system (queue i plus server) in steady-
state;

Wi: the steady-state waiting time of a class i customer;

Si: the steady-state system time, i.e., the waiting time plus the service time, of a
class i customer;

Ci
∆
= lim

k→∞
Cki , ∆i

∆
= lim

k→∞
∆ki , Cij

∆
= lim

k→∞
Ckij .

We also denote by E[zY ] the z-transform of the discrete random variable Y , and by
φZ(s) the Laplace–Stieltjes transform of the random variable Z, i.e.,

φZ(s)
∆
=

∫ ∞
0

e−st dFZ (t).

Finally, we define FZ(t)
∆
= Pr{Z 6 t} the distribution function of Z.

3. Decomposition results for polling systems with MGE arrivals

In this section we establish decomposition results for polling systems with MGE
arrival processes. The MGE distribution, i.e., the Coxian distribution (see [11]) with
real rates, is used very often in practice since it is the simplest class of distributions
that is dense in the space of all distributions, i.e., it can approximate any renewal
arrival process arbitrarily closely. The MGE arrival process with Mi stages, denoted
by MGEMi , can be represented as an arrival timing channel (ATC) consisting of Mi

consecutive exponential stages with rates λi,1,λi,2, . . . ,λi,Mi and with probabilities
pi,1, pi,2, . . . , pi,Mi (pi,Mi = 1) of entering the system after the completion of the 1st,
2nd, . . . ,Mith stage. By introducing the following upper semi-diagonal matrix Ai,0
and dyadic matrix Ai,1:

Ai,0 =



λi,1 −(1− pi,1)λi,1 0 . . . 0

0 λi,2 −(1− pi,2)λi,2
. . .

...
...

. . . . . .
...

... λi,Mi−1 −(1− pi,Mi−1)λi,Mi−1

0 . . . . . . 0 λi,Mi

,

Ai,1 =

 −pi,1λi,1 0 . . . 0
...

...
...

−pi,Miλi,Mi 0 . . . 0

 ,

we can express the interarrival pdf as

ai(t) = −trace
(
e−Ai,0tAi,1

)
and λi

∆
= − 1

ai(0)
.
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We further define e1
∆
= (1, 0, . . . , 0), 1 ∆

= (1, . . . , 1, . . . , 1), Ri to be the ATC stage and

P i,n =
[
P{Li = n, Ri = i}

]i=Mi

i=1 and P Li(z) =
∞∑
n=0

znP i,n.

For systems with MGE arrival processes Bertsimas and Nakazato in [5] proved
the following vector distributional law.

Theorem 1 (Bertsimas and Nakazato [5]). Under assumptions A.1–A.3 and for mixed
generalized Erlang interarrival times characterized by the matrices Ai,0, Ai,1,

PLi(z) = λi(1− z)e1ΦSi(Ai,0 + zAi,1)(Ai,0 + zAi,1)−1, (1)

where for any matrix D we symbolically define: ΦS(D)
∆
=
∫∞

0 e−Dt dFS(t).

If we define the system to be only queue i of the polling system, equation (1)
becomes

PQi(z) = λi(1− z)e1ΦWi(Ai,0 + zAi,1)(Ai,0 + zAi,1)−1. (2)

We next prove a decomposition theorem for polling systems with MGE arrivals
that allows for an arbitrary polling policy that may depend on the number of customers
in each queue. Let us denote by Bi the event that at a random observation time the
server is busy servicing class i customers, and by B′i the event that the server is not
servicing queue i.

Theorem 2. In a polling system satisfying assumptions A.1–A.4, where the ith arrival
process is MGEMi , characterized by matrices Ai,0 and Ai,1,

PQi(z) = PQi|B′i(z)(1 − ρ)(1− z)
(
ΦXi(Ai,0 + zAi,1)− zI

)−1
, (3)

where PQi|B′i(z) is the vector generating function of the number of class i customers
in the system at a random observation time when the server is not servicing class i
customers.

Proof. From theorem 1 and the fact that Si = Wi +Xi and Wi, Xi are independent,
we have

PLi(z) = λi(1− z)e1ΦSi(Ai,0 + zAi,1)(Ai,0 + zAi,1)−1

= λi(1− z)e1ΦXi(Ai,0 + zAi,1)ΦWi(Ai,0 + zAi,1)(Ai,0 + zAi,1)−1.

Combining the above equation with equation (2) we obtain that

P Li(z) = PQi(z)ΦXi (Ai,0 + zAi,1). (4)
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By applying Little’s law to the server, P{Bi} = ρi, and P{B′i} = 1 − ρi. By con-
ditioning on the event Bi we obtain

PLi(z) = zPQi(z) + (1− z)(1− ρi)PQi|B′i(z), (5)

where PQi|B′i(z) is the vector generating function of the number in the system from
class i given that the server is not servicing that class. Combining equations (4) and
(5) we prove equation (3). �

Remarks. 1. If we apply the above analysis to queue i in isolation, the event
B′i corresponds to the system being empty at a random observation time and,
therefore, PQi|B′i(z) = (1 − ρ)−1H i, where H i has the following meaning:

Hi,j
∆
= Pr{Li = 0,Ri = j} with Ri being the ATC of the ith arrival process at a

random observation time. Hence, we obtain that the vector generating function of the
number of customers waiting in the ith queue in isolation, PQo

i
(z), is given by

PQo
i
(z) = H i(1− z)

(
ΦXi(Ai,0 + zAi,1)− zI

)−1
. (6)

This is in agreement with [3, proposition 1].
2. Notice that equation (3) can be equivalently written as

PQi(z) = PQi|B′i(z)Πo(z),

where Πo(z)
4
= (1 − ρ)(1 − z)(ΦXi (Ai,0 + zAi,1) − zI)−1 depends entirely on the

characteristics of the ith queue. Therefore, theorem 2 has a decomposition character.
This fact becomes more apparent in the case of Poisson arrivals where the vector
generating functions become scalars. Then, equation (3) yields that the number of
customers waiting in the ith queue of an arbitrary polling system decomposes into
the number of customers waiting in the ith queue in isolation plus the number of
customers waiting in the ith queue of the polling system when the server is on vacation
from this queue. Therefore, it generalizes the results in [23], where the authors prove
decomposition results for exhaustive and gated cyclic systems with Poisson arrivals,
in that it allows for general polling and service policy and dependencies between the
service times of the different queues.

To further illustrate the decomposition character of theorem 2 we state the fol-
lowing corollary.

Corollary 3. In a polling system satisfying assumptions A.1–A.4, where the ith arrival
process is MGEMi , the expected number of customers waiting in queue decomposes
as follows:

E[Qi] = E
[
Qo
i

]
+E

[
Qi | B′i

]
,
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where E[Qo
i ] is the expected number of class i customers in queue for the MGEMi/G/1

system in isolation and E[Qi | B′i] is the expected number of class i customers in the
system at a random observation time when the server is not servicing class i.

Theorem 2 holds under dynamic polling order and arbitrary service policies. We
next establish sharper decomposition results for systems under static polices, satisfying
assumptions A.1–A.7. For this class of systems we denote by E = {1, 2, . . . ,N} the
set of all queues. We let Eg, E \ Eg be the set of queues served in a gated and
exhaustive mode, respectively. We also let ∆∗i be the age of the intervisit time and
Λ∗i be the elapsed time from the beginning of a cycle for queue i until a random
observation time that occurs during the intervisit time ∆i.

Theorem 4. In a polling system satisfying assumptions A.1–A.7, where the ith arrival
process is MGEMi , characterized by matrices Ai,0 and Ai,1, we have that:

PQi(z) = PQo
i
(z)Φ∆∗i (Ai,0 + zAi,1) and Wi

d
= W o

i + ∆∗i , i ∈ E \ Eg, (7)

PQi(z) = PQo
i
(z)ΦΛ∗i (Ai,0 + zAi,1) and Wi

d
= W o

i + Λ∗i , i ∈ Eg, (8)

where PQo
i
(z) and W o

i indicate the vector generating function of the number of class i
customers in queue, and the waiting time, respectively, of an MGEMi/G/1 queue in
isolation.

Proof. We first consider queue i ∈ E \ Eg . In this case the customers waiting in
queue i at a random observation time during an intervisit period for queue i, must
have arrived during the elapsed intervisit time for queue i. We denote by Ri,0 the
ATC stage of the ith arrival process when the server leaves queue i and, therefore,
he starts an intervisit interval with respect to queue i, ∆i. We also denote by αi,k(t)
(αi,1(t) = αi(t)) the pdf of the remaining interarrival time for a class i customer in
the kth stage of the ATC. Finally, we denote by aji,r(t) the probability for a class i
customer in the ATC to move from stage r 6 j to stage j during the interval [0, t).
Then we obtain, for n > 1,

P
{
Qi = n, Ri = j | B′i

}
=

Mi∑
k=1

∫ ∞
0

P
{
Qi = n, Ri = j | B′i, ∆∗i ∈ dt, Ri,0 = k

}
P
{
Ri,0 = k, ∆∗i ∈ dt

}
=

Mi∑
k=1

∫ ∞
0

ai,k(t) · a(n−1)
i (t) · aji,1(t)P

{
Ri,0 = k, ∆∗i ∈ dt

}
.

Similarly, for n = 0 we have that

P
{
Qi = 0,Ri = j | B′i

}
=

Mi∑
k=1

∫ ∞
0

aji,k(t)P
{
Ri,0 = k, ∆∗i ∈ dt

}
.
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Taking z-transforms in the above relationship and using the fact (proven in [3]):

e−(A0+zA1)t =


a1
i,1(t) . . . aMi,1(t)

...
. . .

...

0 . . . aMi,M (t)



+
∞∑
n=1

zn


ai,1(t)

...

ai,M (t)

 · a(n−1)
i,1 (t) ·

(
a1
i,1(t) . . . aMi,1(t)

)
,

we obtain

PQi|B′i(z) =

Mi∑
k=1

∫ ∞
0
eke−(Ai,0+zAi,1)tP

{
Ri,0 = k, ∆∗i ∈ dt

}
.

Assumptions A.5 and A.7 imply that ∆∗i depends on the arrivals in all other queues
but queue i. Therefore, since all arrival processes are independent (assumption A.4),
the random variables Ri,0 and ∆∗i are also independent. Hence,

PQi|B′i(z) = Ri,0

∫ ∞
0

e−(Ai,0+zAi,1)tP
{

∆∗i ∈ dt
}

= Ri,0Φ∆∗i (Ai,0 + zAi,1). (9)

Taking limits as z → 1, we have from equation (3) that

H i = (1− ρi) lim
z→1

PQi|B′i(z) = (1− ρi)Ri,0,

which combined with equations (6) and (9) completes the proof of the first part of equa-
tion (7). The decomposition of the waiting times follows easily from the distributional
law.

For the case of queue i ∈ Eg, the customers waiting in queue at a random
observation time when the server is on vacation from queue i must have arrived during
Λ∗i . Following a line of arguments similar to the proof of equation (7), equation (8)
follows. �

We next relate Λ∗i to the characteristic quantities of the polling system, namely,
∆i and Ti, as follows:

φΛ∗i (s) = E
[
e−s(Ti+∆∗i )] =

∫ ∞
0

E
[
e−s(Ti+∆∗i ) | ∆i ∈ dx, B′i

]
P
{

∆i ∈ dx | B′i
}
.

Conditioned on the duration of the intervisit interval the random variables Ti and ∆∗i
are independent and, hence,

φΛ∗i (s) =

∫ ∞
0

E
[
e−sTi | ∆i ∈ dx, B′i

]
E
[
e−s∆∗i | ∆i ∈ dx, B′i

]
×P
{

∆i ∈ dx | B′i
}
. (10)
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Due to the ‘length biased’ effect we have (see, for example, Baccelli and Bremaud [1])

E
[
e−s∆∗i | x 6 ∆i < x+ dx, B′i

]
=

∫ x

u=0

1
x

e−su du.

Substituting into equation (10) we have that

φΛ∗i (s) =

∫ ∞
x=0

∫ ∞
t=0

e−stP
{
Ti ∈ dt, ∆i ∈ dx | B′i

}[1− e−sx

sx

]
=

1
sE[∆i]

∫ ∞
x=0

∫ ∞
t=0

e−stP
{
Ti ∈ dt, ∆i ∈ dx

}[
1− e−sx

]
, (11)

where we used the fact that

P
{
Ti ∈ dt, ∆i ∈ dx | B′i

}
=

x

E[∆i]
P{Ti ∈ dt, ∆i ∈ dx}.

Remarks. 1. The form of decomposition results in equations (7) and (8) does not
depend on the specifics of the static polling policy and therefore it holds for cyclic and
probabilistic routing policies as well as for policies with fixed-order polling tables.

2. Similar results hold under different static service policies, and can be proved
using theorem 2 and evaluating PQi|B′i(z). For example, if the service policy is
reserved gated cyclic, where the server serves exactly those class i customers that
were present upon his departure from queue i− 1, then

PQi(z) = PQo
i
(z)ΦΛ̄∗i

(Ai,0 + zAi,1),

where Λ̄∗i
∆
= di−1,i + Λ∗i , since under this discipline the customers waiting in the ith

queue at a random observation time while the server is not servicing this queue must
have arrived either during the switch-over time from queue i−1 or during the elapsed
time from the beginning of the cycle for queue i.

3. The expected waiting time decomposes as follows:

E[Wi] =


E
[
W o
i

]
+
E[Ti∆i]
E[∆i]

+
E[(∆i)2]
2E[∆i]

, i ∈ Eg ,

E
[
W o
i

]
+
E[(∆i)2]
2E[∆i]

, i ∈ E \ Eg.

4. For systems with zero switch-over times, the above analysis carries on until
the point we claimed that ∆∗i , Λ∗i are independent of the ith arrival process. This is
not true anymore since the server starts idling when the system empties and then waits
for the first arrival.

5. Theorem 4 generalizes the decomposition results in [23] in that it allows
for more general arrival processes and arbitrary static polling policies. On the other
hand, [23] also focuses on zero switch-over time systems, which are not discussed in
this paper.
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4. Decomposition results for polling systems in heavy traffic

In this section we consider the class of polling systems with general renewal
arrival processes under heavy traffic conditions. Let us first define the term ‘heavy
traffic conditions’. Intuitively, we say that a queue i is operating under heavy traffic
conditions when both the number of customers and the waiting time are very large,
namely, P [Qi < ∞, Wi < ∞] → 0. For a queue in isolation, in which either
the interarrival or the service times are nonarithmetic, ‘heavy traffic conditions’ are
equivalent to ρ→ 1. For a polling system, the analysis is more complicated and what
we term ‘heavy traffic conditions’ depends on the service policy.

In particular, let π denote a combination of polling order and service policy.
We fix the service time distribution and the switch-over times. Next, we define
the set of arrival rates for which the polling system is stable, i.e., L ∆

= {λ =
(λ1, . . . ,λN ): π is stable}. For example, in the case of the exhaustive, gated ser-
vice policy or binomial-gated policy, it is well known that L = {λ: ρ < 1} under
minimal assumptions on the polling order (see [21,22]). However, for the 1-limited
service policy the stability conditions are different and L = {λ: λiE[Ci] < 1} for any
Markovian polling order (see [9]). Note that E[Ci] depends in general on the arrival
rates, for example, in the case of cyclic polling order

E[Ci] =

∑
iE[di,i+1]
1− ρ .

Let B(L) be the boundary of L.
We say that queue i is operating under heavy traffic conditions if either:

1. λ→ λo ∈ B(L), given that as λ→ λo, P [Qi <∞,Wi <∞]→ 0.

2. dji →∞ for at least one j, given that as dji →∞, P [Qi <∞,Wi <∞]→ 0.

Notice that as λ → λo ∈ B(L) at least one queue will be in heavy traffic conditions
– but not necessarily all, as it may be the case with the k-limited policy. We use the
expression h(x) ∼ r(x) to represent that h(x)/r(x) = 1, under heavy traffic conditions.
Moreover, the expression Y1 ∼ Y2, where Y1 and Y2 are random variables, is used as
equivalent to gY1(x) ∼ gY2(x), where gYi(x) is the z-transform or the Laplace–Stieltjes
transform (depending on whether we have discrete or continuous random variables)
of Yi. For systems in heavy traffic, we have the following result.

Theorem 5 (Bertsimas and Mourtzinou [3]). For a queue under heavy traffic condi-
tions, that satisfies assumptions A.1–A.3, the distributional laws take the form:

E
[
zLi
]
∼ φSi

(
fi(z)

)
and E

[
zQi
]
∼ φWi

(
fi(z)

)
,

where fi(z)
∆
= λi(1 − z) − 1

2λi(1 − z)2(c2
ai − 1), with c2

ai < ∞ being the squared
coefficient of variation of the ith arrival process.
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Using theorem 5 and following the same line of arguments with theorem 2, we
prove the main decomposition result for polling systems in heavy traffic.

Theorem 6. In a polling system that satisfies assumptions A.1–A.4, the number of
customers in the ith queue operating under heavy traffic conditions decomposes as
follows:

E
[
zQi
]
∼ E

[
zQ

o
i
]
E
[
zQi | B′i

]
, (12)

where E[zQ
o
i ] is the z-transform of the number of customers in a GI/GI/1 queue

with the same arrival and service characteristics as queue i and E[zQi | B′i] is the
z-transform of the number of customers in queue i given that the server is not servicing
queue i.

If we further restrict the analysis to static polling order and gated or exhaustive
polices, we obtain:

Theorem 7. In a polling system with renewal arrivals satisfying assumptions A.1–A.7,
if queue i operates under heavy traffic conditions, then:

Wi ∼W o
i + Λ∗i and Qi ∼ Qo

i +N∗ai
(
Λ∗i
)
, i ∈ Eg, (13)

Wi ∼W o
i + ∆∗i and Qi ∼ Qo

i +N∗ai
(
∆∗i
)
, i ∈ E \ Eg, (14)

where W o
i and Qo

i is the waiting time and the queue length in a regular GI/GI/1
queue, respectively, and ∆∗i and Λ∗i have been defined in section 3.

Proof. We first calculate E[zQi | B′i] if queue i ∈ Eg. Given the event B′i, the arrival
of the random observer occurs during intervisit time ∆i. Moreover, as the service
policy is gated, the customers that are waiting in queue upon the arrival of the random
observer must have arrived during the elapsed time from the beginning of the cycle
Ci until the random observation time which occurred during ∆i; which is denoted by
Λ∗i . Due to the heavy traffic assumptions we have therefore that

E
[
zQi | B′i

]
∼ E

[
zN
∗
ai

(Λ∗i )] ∼ φΛ∗i

(
fi(z)

)
, (15)

where φΛ∗i (s) has been calculated in equation (11). Combining equation (15) with
equation (12) and the fact that from distributional laws in heavy traffic

E
[
zQi
]
∼ φWi

(
fi(z)

)
and E

[
zQ

o
i
]
∼ φW o

i

(
fi(z)

)
,

we obtain the first part of equation (13). Similarly, we can prove the decomposition
result for nodes served under exhaustive policy. �
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The decomposition of the mean waiting times under heavy traffic conditions
follows either by differentiating equations (13) and (14), or by differentiating the
distributional laws (see [4] for a similar proof in the case of cyclic polling systems).

E[Wi] ∼


E
[
W o
i

]
+
E[Ti∆i]
E[∆i]

+
E[(∆i)2]
2E[∆i]

, i ∈ Eg,

E
[
W o
i

]
+
E[(∆i)2]
2E[∆i]

, i ∈ E \ Eg,

where

E
[
W o
i

]
∼

2ρiE[X∗i ] +E[Xi](c2
ai − 1)

2(1− ρi)

is the mean waiting time in a regular GI/GI/1 queue and X∗i is the age of the service
time (see [3]).

5. Markovian polling systems under heavy traffic conditions

In this section we use the analytical results we have established so far to evaluate
the performance of Markovian polling systems with gated service operating under
heavy traffic conditions as defined in section 4. According to the Markovian scheme,
the next station to be polled is determined from an irreducible Markov chain M =
{dn, n = 0, 1, . . .} with state space I = {1, . . . ,N}. We denote by {en = i} the event
that the nth station to be polled after time t = 0 is station i, i ∈ I . We assume that the
Markov chain M has stationary one-step transition probabilities, i.e., the conditional
probabilities P{en+1 = j | en = i} for all i, j ∈ I are independent of n. Then we
define

pij
∆
= P{en+1 = j | en = i} and qi

∆
= lim

n→∞
P{en = i}, i, j ∈ I , n = 0, 1, . . . .

We start our analysis by calculating the expected cycle and intervisit time for
class i, E[Ci] and E[∆i], via simple probabilistic arguments. We denote by ρi the
traffic intensity of class i, by

ρ
∆
=

N∑
i=1

ρi

the total traffic intensity, by

σ
∆
=

N∑
i=1

qi

N∑
j=1

pijdij
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the average switch-over time, and by mji the average number of visits per unit time
from queue i to queue j. From the above definitions we have that

E[Ci]
N∑
j=1

mji = 1 and E[∆i]
N∑
j=1

mij = 1− ρi, i = 1, . . . ,N , (16)

1− ρ
σ

= total number of switch-overs within a unit time =
N∑
j=1

N∑
i=1

mji. (17)

Also from the definition of the steady-state probability qi we have

qi =

∑N
j=1mji∑N

j=1

∑N
i=1mji

=
σ

1− ρ

N∑
j=1

mji, i = 1, . . . ,N ,

where for the second equality we used equation (17). Combining the above relationship
with equation (16) we get that

qiE[Ci] =
σ

1− ρ and E[∆i] = (1− ρi)E[Ci], i = 1, . . . ,N. (18)

We next evaluate E[(∆i)2] and E[Ti∆i] and use the results of section 5 in order
to obtain E[Wi]. We notice first that independent of the policy we follow, we always
have that

∆ki = Cki − T k−1
i . (19)

Moreover, if we denote by Nk
i the number of customers that the server finds upon his

arrival in the ith queue at his kth visit, we have from the definition of a gated policy
that

T ki =

Nk
i∑

l=1

Xi,l,

where T ki is the time the server spends servicing the ith queue in the kth visit and
Xi,l represents the service time distribution for the lth customer among Nk

i . Due to
the nature of the gated policy, the Nk

i customers must have arrived during the cycle
time Cki . Under heavy traffic conditions the intervisit time ∆ki → ∞ for all queues
i = 1, . . . ,N and visits k. Hence, under heavy traffic conditions, the moment that
the server enters queue i constitutes a random incidence for the ith arrival process.
Therefore,

Nk
i ∼ N∗ai

(
Cki
)

and T ki ∼
N∗ai (C

k
i )∑

l=1

Xi,l. (20)

Based on equations (19) and (20) we will prove the following theorem.
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Theorem 8. For a Markovian polling system in heavy traffic the mean waiting times
E[Wi] for all i = 1, . . . ,N are given as

E[Wi] ∼
1 + ρi
2E[Ci]

var[Ci] +
(1 + ρi)E[Ci]

2
+

(c2
ai − 1)E[Xi]

2
, (21)

where the terms var[Ci] satisfy a linear system of equations (26)–(28).

Proof. Our strategy is to find E[Ti∆i] and E[(∆i)2] as functions of var[Ci] and then
form a linear system for var[Ci].

Step 1: Evaluation of E[Ti∆i] and E[(∆i)2]. Notice first that from equation (19) we
have

E[Ti∆i]
∆
= lim

k
E
[
T k−1
i ∆ki

]
= lim

k
E
[
T k−1
i Cki

]
− lim

k
E
[(
T k−1
i

)2]
= lim

k
E
[
Cki T

k−1
i

]
− lim

k
var
[
T k−1
i

]
− lim

k
E
[
T k−1
i

]2
= βi + ρi(1− ρi)

(
E[Ci]

)2 − var[Ti], (22)

where βi
∆
= limk→∞Cov[Cki ,T k−1

i ] and we used the fact that E[Ti] = E[Ci] −
E[∆i] = ρiE[Ci].

On the other hand, we have from equation (19) that

var
[
∆ki
]

= var
[
Cki
]

+ var
[
T k−1
i

]
− 2Cov

[
Cki ,T k−1

i

]
.

Taking limits as k →∞ and adding and subtracting E[∆i]2 we have that

E
[
(∆i)2] = var[Ci] + var[Ti]− 2βi + (1− ρi)2(E[Ci]

)2
.

Next, we need to evaluate var[Ti]. By differentiating equation (20) twice we obtain

E
[
(Ti)

2] ∼ ρ2
iE
[
(Ci)

2]+ λiE
[
(Xi)

2]E[Ci] + λi
(
c2
ai − 1

)(
E[Xi]

)2
E[Ci].

We now use equation (18) and step 1 together with theorem 7 to obtain equation (21).
To conclude the proof of the theorem we need to formulate the linear system that
yields var[Ci] for all i = 1, . . . ,N .

Step 2: Formulation of an O(N3) linear system. We start by defining a reversed
Markov chain of transitions obtained by M by inverting the time parameter. This
reversed chain is stationary with the same equilibrium probabilities qj , j ∈ I , see [18],
and one-step transition probabilities for i, j ∈ I , given by

bij = P{the probability that the last stop before queue i was queue j} =
qj
qi
pji.
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Next, we decompose the interval between a random visit to node k and the previous
visit to node i by conditioning on the node visited just before node k, and we obtain

Cki =

{
Cji + djk + Tj w.p. bkj for j 6= i,
dik + Ti w.p. bki.

(23)

By taking expectations we obtain the following N2 ×N2 system:

E[Cki] =
N∑
j=1

bkj
(
E[djk] +E[Tj]

)
+

N∑
j=1
j 6=k

bkjE[Cji] for all i, k.

Notice that we can decompose the above system for each i and obtain N independent
N ×N linear systems.

To proceed with our analysis we need to calculate var[Ci] = E[CiiCii] −
(E[Cii])2. From equation (23) we have that

E[CiiCii] =
N∑
j=1

bij
(
E
[
d2
ji

]
+E

[
T 2
j

]
+ 2E[dji]E[Tj]

)
+

N∑
j=1
j 6=i

bij
(
2E[dik]E[Cji] +E[CjiCji] + 2E[TjCji]

)
. (24)

Since we have already expressed E[(Tj)2] as a function of E[CjjCjj], only we need
to find a relationship between E[TjCji], E[CjiCji] and other known quantities for
all i, j where i 6= j. Using (23) we have that

E[TjCji] =
N∑
m=1

bjmE
[
(dmjTj + TmTj) | m is visited just before j

]
+

N∑
m=1
m6=i

bjmE[TjCmi | m is visited just before j]. (25)

From the defining relationships of the system it is straightforward to get

E[TmTj | m 6= j is visited just before j]

∼ E
[
Tm

N∗aj (Tm+dmj+Cmj )∑
l=1

Xj,l

]
= ρj

(
E
[
T 2
m

]
+E[dmj]E[Tm] +E[TmCmj]

)
,

E[TjTj | j is visited just before j] ∼ ρj
(
E
[
T 2
j

]
+E[djj]E[Tj ]

)
,

E[TjCmi | m 6= j, i is visited just before j]

∼ ρj
(
E[TmCmi] +E[dmj ]E[Cmi] +E[CmiCmj]

)
,
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E[TjCji | j 6= i is visited just before j] ∼ ρj
(
E[TjCji] +E[djj]E[Cji]

)
,

E[Tjdmj | m is visited just before j]

∼ ρj
(
E
[
(dmj)

2]+E[dmj ]E[Cmj ] +E[dmj ]E[Tm]
)
,

E[Tjdjj | j is visited just before j] ∼ ρj
(
E
[
(djj)

2]+E[djj]E[Tj ]
)
.

Substituting the above set of equations into equation (25) we obtain the following
N2 ×N2 system:

E[TjCji] =
N∑
m=1

bjmρj
(
E
[
d2
mj

]
+ 2E[dmj ]E[Tm] +E

[
T 2
m

])
+

N∑
m=1
m6=i

bjmρj
(
E[Cmi]E[dmj ] +E[TmCmi]

)
+

N∑
m=1
m6=j,i

bjmρjE[CmjCmi]

+
N∑
m=1
m6=j

bjmρj
(
E[Cmj ]E[dmj ] +E[TmCmj]

)
. (26)

As for E[CjiCji] we can take second moments in equation (23) and obtain E[CkiCkr]
for all k, i, r. Recall that from equation (23) we have that

Cki =

{
Cji + djk + Tj w.p. bkj for j 6= i,
dik + Ti w.p. bki

and similarly

Ckr =

{
Cjr + djk + Tj w.p. bkj for j 6= r,
drk + Tr w.p. bkr.

Assuming that r 6= i we have that

E[CkiCkr] = bkiE
[
(dik + Ti)(dik + Ti + Cir)

]
+ bkrE

[
(drk + Tr + Cri)(drk + Tr)

]
+

N∑
j=1, j 6=i,r

bkjE
[
(djk + Tj + Cji)(djk + Tj + Cjr)

]
.

Equivalently, we have

E[CkiCkr]

=
N∑
j=1

bkj
(
E
[
d2
jk

]
+E

[
T 2
j

]
+ 2E[djk]E[Tj]

)
+

N∑
j=1
j 6=i,r

bkj
(
E[djk]

(
E[Cjr] +E[Cji]

)
+E[CjiCjr] +E[TjCjr] +E[TjCji]

)
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+ bki
(
E[dik]E[Cir] +E[TiCir]

)
+ bkr

(
E[drk]E[Cri] +E[TrCri]

)
. (27)

We can similarly get an expression for E[CkiCki], as follows:

E[CkiCki] =
N∑
j=1

bkj
(
E
[
d2
jk

]
+E

[
T 2
j

]
+ 2E[djk]E[Tj ]

)
+

N∑
j=1
j 6=i

bkj
(
2E[djk]E[Cji] +E[CjiCji] + 2E[TjCji]

)
. (28)

Combining the last two equations with equation (26) results into an (N3 +N2)×(N3 +
N2) system with unknowns the E[CkiCri] and E[TiCki], for all i, k, r. �

Remarks. 1. It is important to notice that we obtained equation (21) without using
the fact that the polling policy is Markovian. In particular, we proved equation (21)
for any static gated polling system with independent renewal arrival processes, under
heavy traffic. For Poisson arrivals equation (21) is known to hold for cyclic systems
(see [24]), for random polling (see [19]) and for systems with a fixed-order polling
table (see [2]). A similar relationship can be proved, when the arrival processes are
MGE.

2. In the special case where the polling policy is cyclic, our analysis is greatly
simplified and we obtain the results of [4]. In the case where the polling policy is
random, i.e., pij = pj for all i, j = 1, . . . ,N and dij = di we obtain a generalization
of the results of Kleinrock and Levy [19] in the sense that we allow for general arrival
processes.

3. If the Markovian system is symmetric, i.e., the arrival and service processes
and the switch-over time distributions are the same for all queues and also pij = 1/N
for all i, j = 1, . . . ,N , we obtain closed-form expressions for the expected waiting
times:

E[Wi] ∼
(N − 1)E[d]
2(1−Nρ)

+
N (1 + ρ)E[d]

2(1−Nρ)
+
NλE[X2]
2(1−Nρ)

+
var[d]
2E[d]

+
(c2
a − 1)E[X2]

2
,

where λ and c2
a are the arrival rate and the square coefficient of arrival process,

respectively, E[X2] is the second moment of the service time distribution, ρ
∆
= λE[X]

is the traffic intensity of the individual node and d is the switch-over time.

Numerical results

We now evaluate numerically our results for a number of 5-node Markovian
systems under gated policy. First, we consider a series of symmetric systems with
transition matrix described in figure 1(a). Then, we consider a series of asymmetric
systems with transition matrix described in figure 1(b).
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Figure 1. Transition chains.

Table 1
Numerical results for 5-node symmetric polling systems.

ρ d = 0.5 d = 2.0

E[WH] E[WS] Dev E[WH] E[WS] Dev

0.5 5.250 5.323 (±0.113) −1.371% 19.500 19.510 (±0.293) −0.051%
0.6 6.875 6.927 (±0.197) −0.751% 24.875 24.879 (±0.255) −0.016%
0.7 9.583 9.618 (±0.113) −0.364% 33.834 33.838 (±0.288) −0.012%
0.8 15.000 15.020 (±0.294) −0.133% 51.750 51.753 (±0.549) −0.006%
0.9 31.250 31.258 (±0.617) −0.025% 105.50 105.517 (±0.928) −0.016%

For all systems, the arrival processes are Erlang 2 with λi = 1
5ρ, and the services

are Exponential with µi = 1.
Table 1 presents the performance of our method, i.e., the accuracy of the average

waiting time calculated via our heavy traffic method compared to the actual average
waiting time obtained via simulation, as a function of the total traffic intensity, ρ, and
the switch-over time, d, for the symmetric polling system and table 2 presents the
corresponding results for the asymmetric system. We denote by E[WH

i ] the waiting
time for class i as obtained using theorem 7, by

E
[
WH

] ∆
=
∑
i

λi
λ
E
[
WH
i

]
,

and by E[WS] the average waiting time obtained via simulation. We also denote by
Dev the deviation between the two methods defined as

Dev
∆
=
E[WH]−E[WS]

E[WS]
.

Finally, we report the standard error of the simulation.
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Table 2
Numerical results for 5-node asymmetric polling systems.

ρ d = 0.5 d = 2.0

E[WH] E[WS] Dev E[WH] E[WS] Dev

0.5 6.640 6.701 (±0.115) −0.910% 25.060 25.066 (±0.206) −0.024%
0.6 8.635 8.677 (±0.096) −0.484% 31.915 31.917 (±0.216) −0.006%
0.7 11.960 11.988 (±0.123) −0.234% 43.340 43.340 (±0.969) 0.000%
0.8 18.610 18.626 (±0.299) −0.086% 66.190 66.188 (±0.777) 0.015%
0.9 38.560 38.575 (±0.398) −0.039% 134.740 134.745 (±1.486) −0.037%

Table 3
Numerical results for 5-node asymmetric polling systems with d = 0.5.

ρ E[WH
1 ] E[WS

1 ] Dev1 E[WH
2 ] E[WS

2 ] Dev2

0.5 1.447 1.563 (±0.017) −7.421% 7.938 7.985 (±0.139) −0.589%
0.6 2.000 2.085 (±0.018) −4.077% 10.293 10.325 (±0.114) −0.310%
0.7 2.897 2.954 (±0.026) −1.930% 14.226 14.247 (±0.147) −0.147%
0.8 4.656 4.689 (±0.069) −0.704% 22.098 22.109 (±0.357) −0.050%
0.9 9.862 9.877 (±0.098) −0.152% 45.735 45.747 (±0.473) −0.026%

Table 4
Numerical results for 5-node asymmetric polling systems with d = 2.0.

ρ E[WH
1 ] E[WS

1 ] Dev1 E[WH
2 ] E[WS

2 ] Dev2

0.5 5.102 5.119 (±0.024) −0.332% 30.049 30.051 (±0.157) −0.007%
0.6 6.838 6.845 (±0.033) −0.102% 33.184 38.187 (±0.196) −0.009%
0.7 9.756 9.759 (±0.155) −0.031% 51.736 51.738 (±0.857) −0.004%
0.8 15.632 15.632 (±0.145) 0.000% 78.830 78.831 (±0.752) −0.001%
0.9 33.341 33.342 (±0.291) −0.003% 160.090 160.096 (±1.414) −0.004%

Next, in tables 3 and 4 we compare our results for the individual waiting times
for the system of figure 1(b), with switch-over time d = 0.5 and d = 2.0, respectively.
Due to the topology of the system, classes 2–5 have the same expected waiting time.
Hence, we report the expected waiting time for classes 1 and 2, E[WH

1 ] and E[WH
2 ],

respectively. Similarly we report E[WS
1 ] and E[WS

2 ], the expected waiting time for
classes 1 and 2 obtained via simulation. We also denote by Devi the deviation between
the two methods defined as

Devi
∆
=
E[WH

i ]−E[WS
i ]

E[WS
i ]

for i = 1, 2.

Finally, we report the standard error of the simulation.
As expected, for any particular system the performance of our method improves

as the traffic intensity increases. Moreover, by comparing the accuracy of our methods
for different systems, we see that our method performs better as the waiting time
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increases. For example, for traffic intensity ρ = 0.5 our prediction for the expected
waiting time is very accurate, in both symmetric and asymmetric systems with switch-
over times d = 2.0, but not as accurate for the symmetric system with switch-over
times d = 0.5. Similarly, it is not as accurate for the mean waiting time for node 1
(the node with the smallest wait) in the asymmetric case as it is for the mean waiting
time of the other nodes. These remarks are consistent with the conclusions drawn from
numerical results in the cases of single class and multiclass priority queues in [4] and
are based on the nature of our asymptotic method.

6. Concluding remarks

In this paper we established a number of structural relationships for polling sys-
tems. We started our analysis allowing for dynamic polling policies and demonstrated
that the number of customers in each node of the system consists of one component
that depends entirely on the specific characteristics of this node in isolation and another
component that incorporates the dependencies introduced by the polling setting. By
considering static polling policies (assumptions A.5–A.7), we further characterized the
second component and obtained sharper decomposition results for both the number of
customers in the system and the waiting time of each customer class.

The derived decomposition results apart from enhancing our understanding of the
polling systems mechanism, can be used to obtain the performance analysis of specific
systems as we illustrated in section 5. Moreover, since our methodology was based on
distributional laws, our results further demonstrate the importance of using the unified
approach we proposed in [3] to address various queueing problems.
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